Resources
The idea is to bring together leading experts from the neutrino and geoscience communities to discuss in depth the present status of the field and its future developments. The main aim of this workshop is to explore the role of oscillation and absorption of neutrinos towards the tomography of Earth - complementary to the seismic studies and gravitational measurements - paving the way for multi-messenger tomography of Earth. Each drop-down box contains resources for seismic studies, gravitational measurements, neutrino tomography, geoneutrinos and Earth tomography, relevant neutrino experiments, and previous neutrino tomography conferences.
Below are relevant references to the tomography of Earth by seismology:
- Yu He, et.al., Superionic iron alloys and their seismic velocities in Earth’s inner core (2022), link: https://www.nature.com/articles/s41586-021-04361-x
- Haijun Huang et.al., Inner core composition paradox revealed by sound velocities of Fe and Fe-Si alloy (2022), link: https://www.nature.com/articles/s41467-022-28255-2
- Wei Wang & John E. Vidale, An initial map of fine-scale heterogeneity in the Earth’s inner core (2022), link: https://www.nature.com/articles/s41561-022-00903-8
- Ying Zhou, Transient variation in seismic wave speed points to fast fluid movement in the Earth's outer core (2022), link: https://www.nature.com/articles/s43247-022-00432-7
- Daijo Ikuta, Eiji Ohtani & Naohisa Hirao, Two-phase mixture of iron–nickel–silicon alloys in the Earth’s inner core (2021), link: https://www.nature.com/articles/s43247-021-00298-1
- Laura G. Sammon, William F. McDonough, Walter D. Mooney, The composition of the deep continental crust inferred from geochemical and geophysical data (2021), link: https://www.essoar.org/doi/10.1002/essoar.10507582.1
- Kei Hirose, Bernard Wood & Lidunka Vocadlo, Light elements in the Earth’s core (2021), link: https://www.nature.com/articles/s43017-021-00203-6#:~:text=Earth's%20outer%20and%20inner%20core,%2C%20oxygen%2C%20carbon%20and%20hydrogen.
- Mingqiang Hou et.al., Superionic iron oxide–hydroxide in Earth’s deep mantle (2021), link: https://www.nature.com/articles/s41561-021-00696-2
- Daniel A. Frost et.al., Dynamic history of the inner core constrained by seismic anisotropy (2021), link: https://www.nature.com/articles/s41561-021-00761-w
- Suraj K. Bajgain, Mainak Mookherjee & Rajdeep Dasgupta, Earth’s core could be the largest terrestrial carbon reservoir (2021), link: https://www.nature.com/articles/s43247-021-00222-7
- Terry-Ann Suer et.al., Reconciling metal–silicate partitioning and late accretion in the Earth (2021), link: https://www.nature.com/articles/s41467-021-23137-5
- Koichiro Umemoto and Kei Hirose, Chemical compositions of the outer core examined by first principles calculations, Earth and Planetary Science Letters, 2020. Link: https://www.sciencedirect.com/science/article/abs/pii/S0012821X19307010
- Farcy, R. Arevalo Jr. , and W. F. McDonough, K/U of the MORB Source and Silicate Earth (2020), link: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020JB020245
- L. N. Kennett, Radial earth models revisited, Geophysical Journal International, 2020. Link: https://academic.oup.com/gji/article-abstract/222/3/2189/5859494
- Michele Dragoni. (2020) Gravity in Earth’s Interior. The Physics Teacher 58:2, 97-100. Link: https://aapt.scitation.org/doi/10.1119/1.5144788
- Mathieu G. A. Lapôtre et.al., Probing space to understand Earth (2020), link: https://www.nature.com/articles/s43017-020-0029-y#:~:text=The%20Parker%20Solar%20Probe%20(launched,affected%20the%20inner%20planets213.
- Peng Ni et.al., Heavy iron isotope composition of iron meteorites explained by core crystallization (2020), link: https://www.nature.com/articles/s41561-020-0617-y
- Peng Ni et.al., Heavy iron isotope composition of iron meteorites explained by core crystallization (2020), link: https://www.nature.com/articles/s41561-020-0617-y
- Yunguo Li et. al., The Earth’s core as a reservoir of water (2020), link: https://www.nature.com/articles/s41561-020-0578-1
- Julien Aubert & Christopher C. Finlay, Geomagnetic jerks and rapid hydromagnetic waves focusing at Earth’s core surface (2019), link: https://www.nature.com/articles/s41561-019-0355-1#:~:text=As%20they%20reach%20the%20core,variations%20in%20magnetic%20field%20acceleration.
- Anatoly B. Belonoshko et.al., Low viscosity of the Earth’s inner core (2019), link: https://www.nature.com/articles/s41467-019-10346-2
- William F. McDonough et.al., Chemically defining the building blocks of the Earth (2019), link: https://ui.adsabs.harvard.edu/abs/2018arXiv181211717Y/abstract
- Shengxuan Huang, Xiang Wu & Shan Qin, Stability and anisotropy of (Fex Ni1-x )2 O under high pressure and implications in Earth’s and super-Earths’ core (2018), link: https://www.nature.com/articles/s41598-017-18678-z
- Philip W. Livermore et.al., An accelerating high-latitude jet in Earth’s core (2017), link: https://www.nature.com/articles/ngeo2859
- Kei Hirose et.al., Crystallization of silicon dioxide and compositional evolution of the Earth’s core (2017), link: https://www.nature.com/articles/nature21367
- Dongdong Tian & Lianxing Wen, Seismological evidence for a localized mushy zone at the Earth’s inner core boundary (2017), link: https://www.nature.com/articles/s41467-017-00229-9
- William F. McDonough, Earth’s Core (2017), link: https://www.researchgate.net/publication/318151037_Earth's_Core
- Christopher Davies & Catherine Constable, Geomagnetic spikes on the core-mantle boundary (2017), link: https://www.nature.com/articles/ncomms15593
- William F. McDonough et.al., Perceiving the crust in 3D: a model integrating geological, geochemical, and geophysical data (2017), link: https://arxiv.org/pdf/1712.04676.pdf
- William F. McDonough, The Composition of the Lower Mantle and Core (2016), link: https://agupubs.onlinelibrary.wiley.com/doi/10.1002/9781118992487.ch12
- Youjun Zhang et.al., Experimental constraints on light elements in the Earth’s outer core (2016), link: https://www.nature.com/articles/srep22473
- Konstantin D. Litasov and Anton Shatskiy, Composition of the Earth’s core: A review, Russian Geology and Geophysics, 2016. Link: https://www.researchgate.net/publication/293642410_Composition_of_the_Earth's_core_A_review
- James Badro, Julien Siebert & Francis Nimmo, An early geodynamo driven by exsolution of mantle components from Earth’s core (2016), link: https://www.nature.com/articles/nature18594
- Zuzana Konôpkova et.al., Direct measurement of thermal conductivity in solid iron at planetary core conditions (2016), link: https://www.nature.com/articles/nature18009
- Kenji Ohta et.al., Experimental determination of the electrical resistivity of iron at Earth’s core conditions (2016), link: https://www.nature.com/articles/nature17957
- Joseph G. O’Rourke & David J. Stevenson, Powering Earth’s dynamo with magnesium precipitation from the core (2016), link: https://www.nature.com/articles/nature16495
- Souriau,M. Calvet (2015), Deep Earth Structure: The Earth’s Cores. Treatise on Geophysics, 725-757. Link: http://seismo.berkeley.edu/~barbara/REPRINTS/romanowicz-treatise2015-Q.pdf
- Vivian Tang , Li Zhao & Shu-Huei Hung, Seismological evidence for a non-monotonic velocity gradient in the topmost outer core (2015), link:https://www.nature.com/articles/srep08613
- Peng Zhang, R. E. Cohen, & K. Haule, Effects of electron correlations on transport properties of iron at Earth’s core conditions (2015), link: https://www.nature.com/articles/nature14090
- Prescher et.al., High Poisson's ratio of Earth's inner core explained by carbon alloying (2015), link: https://www.nature.com/articles/ngeo2370
- Christopher Davies etl.al., Constraints from material properties on the dynamics and evolution of Earth’s core (2015), link: https://www.nature.com/articles/ngeo2492
- H Palme and HStC O’Neill, Cosmochemical Estimates of Mantle Composition (2014), link: https://www.sciencedirect.com/science/article/pii/B9780080959757002011?via%3Dihub
- Bruce Buffett, Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core (2014), link: https://www.nature.com/articles/nature13122
- F. McDonough. 2014. Compositional Model for the Earth's Core. Treatise on Geochemistry, 559-577. Link: https://www.sciencedirect.com/science/article/pii/B9780080959757002151?via%3Dihub
- A. Bouhifd, Helium in Earth’s early core (2013), link: https://www.nature.com/articles/ngeo1959#:~:text=Based%20on%20estimated%20concentrations%20of,the%20age%20of%20the%20Earth.
- Allison Gale et.al, The mean composition of ocean ridge basalts (2013), link: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012GC004334
- Matthew G. Jackson, A. Mark Jellinek, Major and trace element composition of the high 3 3He/ 4 He mantle: Implications for the composition of a nonchonditic Earth (2013), link: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/ggge.20188
- Mattesini et.al., Candy Wrapper for the Earth’s Inner Core (2013), link: https://www.nature.com/articles/srep02096
- Julien Aubert, Christopher C. Finlay & Alexandre Fournier, Bottom-up control of geomagnetic secular variation by the Earth’s inner core (2013), link: https://www.nature.com/articles/nature12574
- Hrvoje Tkalcic et.al., The shuffling rotation of the Earth’s inner core revealed by earthquake doublets (2013), link: https://www.nature.com/articles/ngeo1813
- E. Gleason & W. L. Mao, Strength of iron at core pressures and evidence for a weak Earth’s inner core (2013), link: https://www.nature.com/articles/ngeo1808
- Ian H. Campbell & Hugh St C. O’Neill, Evidence against a chondritic Earth (2012), link: https://www.nature.com/articles/nature10901
- Thierry Alboussière, Renaud Deguen, Asymmetric dynamics of the inner core and impact on the outer core. Journal of Geodynamics 61, 172-182. (2012) Link: https://www.sciencedirect.com/science/article/abs/pii/S0264370712001147
- Denis Andrault et.al., Solid–liquid iron partitioning in Earth’s deep mantle (2012), link: https://www.nature.com/articles/nature11294
- Monica Pozzo et.al., Thermal and electrical conductivity of iron at Earth’s core conditions (2012), link: https://www.nature.com/articles/nature11031
- Haijun Huang et.al., Evidence for an oxygen-depleted liquid outer core of the Earth (2011), link: https://www.nature.com/articles/nature10621
- David Gubbins et.al., Melting of the Earth’s inner core (2011), link: https://www.nature.com/articles/nature10068
- William F. McDonough, Meteoritic Clues Point Chromium Toward Earth’s Core (2011), link: https://www.science.org/doi/10.1126/science.1203353
- Javoy et.al., The chemical composition of the Earth: Enstatite chondrite models (2010), link: https://www.sciencedirect.com/science/article/abs/pii/S0012821X10001445?via%3Dihub
- George Helffrich, & Satoshi Kaneshima, Outer-core compositional stratification from observed core wave speed profiles (2010), link: https://www.nature.com/articles/nature09636
- James M. Brenan, and William F. McDonough, Core formation and metal–silicate fractionation of osmium and iridium from gold (2009), link: https://www.nature.com/articles/ngeo658
- Ricardo Arevalo Jr., William F. McDonough, Mario Luong, The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution (2008), link: https://www.sciencedirect.com/science/article/abs/pii/S0012821X08007711?via%3Dihub
- Thorne Lay et.al., Core–mantle boundary heat flow (2008), link: https://www.nature.com/articles/ngeo.2007.44#:~:text=The%20power%20available%20to%20the,regenerates%20the%20Earth's%20magnetic%20field
- William F McDonough, and Ricardo Arevalo Jr., Uncertainties in the composition of Earth, its core and silicate sphere (2008), link: https://inspirehep.net/files/496cb99f71e54650f320ffae89aea9b0
- William F. McDonough, et.al., The Fe–C system at 5 GPa and implications for Earth’s core (2008), link: https://www.sciencedirect.com/science/article/abs/pii/S0016703708003785?via%3Dihub
- William F. McDonough et.al., Metal–silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion (2008), link: https://www.sciencedirect.com/science/article/abs/pii/S0016703707005674
- HUGH ST . C. O’N EILL, HERBERT PALME, Collisional erosion and the non-chondritic composition of the terrestrial planets (2008), link: https://royalsocietypublishing.org/doi/10.1098/rsta.2008.0111
- Ricardo Arevalo Jr., William F. McDonough, Tungsten geochemistry and implications for understanding the Earth's interior (2008), link: https://www.sciencedirect.com/science/article/abs/pii/S0012821X08003580
- Tanya Lyubetskaya and Jun Korenaga, Chemical composition of Earth’s primitive mantle and its variance (2007), link: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JB004223
- William F. McDonough et.al., How much potassium is in the Earth's core? (2007), link: https://www.sciencedirect.com/science/article/abs/pii/S0012821X07000775?via%3Dihub
- William F. McDonough et.al., Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: Implications for radioactivity in the Earth’s core (2006), link: https://www.sciencedirect.com/science/article/abs/pii/S001670370500935X?via%3Dihub
- Rhea K. Workman, Stanley R. Hart, Major and trace element composition of the depleted MORB mantle (DMM) (2005), link: https://www.sciencedirect.com/science/article/abs/pii/S0012821X04007101
- Vincent J. M. Salters & Andreas Stracke, Composition of the depleted mantle (2004), link: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2003GC000597
- Masters and D. Gubbins, On the resolution of density within the Earth, Physics of the Earth and Planetary Interiors 140, 159 (2003). Link: https://www.sciencedirect.com/science/article/pii/S0031920103001705
- B. L. N. Kennett, On the density distribution within the Earth, Geophysical Journal International 132, 374 (1998). Link: https://academic.oup.com/gji/article/132/2/374/673083
- A. Bolt, The Precision of Density Estimation Deep in the Earth, Q. J. R. Astron. Soc. 32, 367 (1991). Link: https://ui.adsabs.harvard.edu/abs/1991QJRAS..32..367B/abstract
- M. Dziewonski and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Interiors 25, 297 (1981). Link: https://www.sciencedirect.com/science/article/pii/0031920181900467
- G. Brush, Discovery of the Earth’s core, American Journal of Physics 48, 705 (1980). Link: https://aapt.scitation.org/doi/10.1119/1.12026
- E. Bullen, (1975)The Earth's Density, Chapman & Hall London. Link: https://www.sciencedirect.com/science/article/pii/0031920177900498?via%3Dihub
- C. Robertson, The interior of the Earth, an elementary description (1966). Link: https://pubs.usgs.gov/circ/1966/0532/report.pdf
- F. Birch, Density and composition of mantle and core, Journal of Geophysical Research (1896-1977) 69, 4377 (1964). Link: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JZ069i020p04377
- F. Birch, The alpha-gamma transformation of iron at high pressures, and the problem of the earth’s magnetism, American Journal of Science 238 (1940), no. 3 192–211. Link: https://www.ajsonline.org/content/238/3/192
- I. Lehmann, Bureau Central Séismologique International Strasbourg: Publications du Bureau Central Scientifiques 14, 87 (1936). Link: https://courses.seas.harvard.edu/climate/eli/Courses/EPS281r/Sources/Inner-Core/Lehmann-1936-extracts+interpretation.pdf
- E. Williamson and L. Adams, Density distribution in the Earth, J. Wash. Acad. Sci. 13, 413 (1923). Link: https://websites.pmc.ucsc.edu/~pkoch/EART_206/09-0129/Williamson%20&%20Adams%2023%20JWAS%2013-413.pdf
Below are references that measured the various parameters of Earth, such as the mass of Earth and moment of inertia of Earth, using the gravitational measurements:
- USAO, USNO, HMNAO and UKHO The Astronomical Almanac (US Navy, 2020), Link https://aa.usno.navy.mil/ and http://asa.hmnao.com/Error! Hyperlink reference not valid.
- Chen, W., Li, C. L., Ray, J., Shen, W. B. & Huang, C. L. Consistent estimates of the dynamic figure parameters of the Earth. J. Geod. 89, 179–188 (2015). Link: Error! Hyperlink reference not valid.
- Luzum, B. et al. The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for fundamental astronomy. Celest. Mech. Dyn. Astron. 110, 293–304 (2011). Link: https://link.springer.com/content/pdf/10.1007%2Fs10569-011-9352-4.pdf
- James G. Williams, CONTRIBUTIONS TO THE EARTH’S OBLIQUITY RATE, PRECESSION, AND NUTATION, Astronomical Journal v.108, p.711, 1994. Link: https://ui.adsabs.harvard.edu/abs/1994AJ....108..711W/abstract
Below are useful references for Earth tomography using neutrino oscillations and absorption. These are relevant for the neutrino community because they contain information on how neutrinos can probe the Earth's internal structure:
- De Rujula, S. L. Glashow, R. R. Wilson, and G. Charpak, Neutrino Exploration of the Earth, Phys. Rept. 99, 341 (1983). link: https://www.sciencedirect.com/science/article/abs/pii/0370157383901084
- N. Ioannisian and A. Y. Smirnov, Neutrino oscillations in low density medium, Phys. Rev. Lett. 93, 241801 (2004), arXiv:hep-ph/0404060. Link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.241801
- C. Gonzalez-Garcia, F. Halzen, M. Maltoni, and H. K. M. Tanaka, Radiography of earth's core and mantle with atmospheric neutrinos, Phys. Rev. Lett. 100, 061802 (2008), arXiv:0711.0745 [hep-ph]. Link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.061802
- Jain, J. P. Ralston, and G. M. Frichter, Neutrino absorption tomography of the earth's interior using isotropic ultrahigh-energy flux, Astropart. Phys. 12, 193 (1999), arXiv:hep-ph/9902206. Link: https://www.sciencedirect.com/science/article/abs/pii/S0927650599000882?via%3Dihub
- Gandhi and W. Winter, Physics with a very long neutrino factory baseline, Phys. Rev. D 75, 053002 (2007), arXiv:hep-ph/0612158. Link: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.75.053002
- K. Agarwalla, T. Li, O. Mena, and S. Palomares-Ruiz, Exploring the Earth matter effect with atmospheric neutrinos in ice, arXiv:1212.2238. Link: https://arxiv.org/abs/1212.2238
- Nicolaidis, Neutrinos for Geophysics, Phys. Lett. B 200, 553 (1988). Link: https://www.sciencedirect.com/science/article/abs/pii/0370269388901700
- Winter, Probing the absolute density of the Earth's core using a vertical neutrino beam, Phys. Rev. D 72, 037302 (2005), arXiv:hep-ph/0502097. Link: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.72.037302
- Walter Winter, Atmospheric Neutrino Oscillations for Earth Tomography, Nucl.Phys.B 908 (2016) 250-267 e-Print:1511.05154. Link: https://www.sciencedirect.com/science/article/pii/S0550321316300190?via%3Dihub
- Ohlsson and W. Winter, Reconstruction of the earth's matter density profile using a single neutrino baseline, Phys. Lett. B 512, 357 (2001), arXiv:hep-ph/0105293. Link: https://www.sciencedirect.com/science/article/abs/pii/S0370269301007316?via%3Dihub
- Lindner, T. Ohlsson, R. Tomas, and W. Winter, Tomography of the earth's core using supernova neutrinos, Astropart. Phys. 19, 755 (2003), arXiv:hep-ph/0207238. Link: https://www.sciencedirect.com/science/article/abs/pii/S0927650503001208?via%3Dihub
- K. Ermilova, V. A. Tsarev, and V. A. Chechin, Buildup of Neutrino Oscillations in the Earth, JETP Lett. 43, 453 (1986). Link: https://ui.adsabs.harvard.edu/abs/1986JETPL..43..453E/abstract
- Rott, A. Taketa, and D. Bose, Spectrometry of the Earth using Neutrino Oscillations, Sci. Rep. 5, 15225 (2015), arXiv:1502.04930 [physics.geo-ph]. Link: https://www.nature.com/articles/srep15225
- Donini, S. Palomares-Ruiz, and J. Salvado, Neutrino tomography of Earth, Nature Phys. 15, 37 (2019), arXiv:1803.05901 [hep-ph]. Link: https://www.nature.com/articles/s41567-018-0319-1
- Winter, Neutrino tomography: Learning about the earth's interior using the propagation of neutrinos, Earth Moon Planets 99, 285 (2006), arXiv:physics/0602049. Link: https://link.springer.com/article/10.1007/s11038-006-9101-y
- Minakata and S. Uchinami, On in situ Determination of Earth Matter Density in Neutrino Factory, Phys. Rev. D 75, 073013 (2007), arXiv:hep-ph/0612002. Link: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.75.073013
- L. Wilson, Neutrino Tomography: Tevatron Mapping Versus the Neutrino Sky, Nature 309, 38 (1984). Link: https://www.nature.com/articles/309038a0
- Kuo, H. J. Crawford, R. Jeanloz, B. Romanowicz, G. Shapiro, and M. L. Stevenson, Extraterrestrial neutrinos and Earth Structure, Earth and Planet Science Lett. , 95 (1995). Link: https://www.sciencedirect.com/science/article/pii/0012821X9500050M?via%3Dihub
- T. Ohlsson and W. Winter, Could one find petroleum using neutrino oscillations in matter?, Europhys. Lett. 60, 34 (2002), arXiv:hep-ph/0111247. Link: https://iopscience.iop.org/article/10.1209/epl/i2002-00314-9
- M. M. Reynoso and O. A. Sampayo, On neutrino absorption tomography of the earth, Astropart. Phys. 21, 315 (2004), arXiv:hep-ph/0401102. Link: https://www.sciencedirect.com/science/article/pii/S0927650504000179?via%3Dihub
- A. N. Ioannisian and A. Y. Smirnov, Matter effects of thin layers: Detecting oil by oscillations of solar neutrinos, arXiv:hep-ph/0201012. Link: https://arxiv.org/abs/hep-ph/0201012
- J. Tang and W. Winter, Requirements for a New Detector at the South Pole Receiving an Accelerator Neutrino Beam, JHEP 02, 028 (2012), arXiv:1110.5908 [hep-ph]. Link: https://link.springer.com/article/10.1007/JHEP02(2012)028
- E. K. Akhmedov, M. A. Tortola, and J. W. F. Valle, Geotomography with solar and supernova neutrinos, JHEP 06, 053 (2005), arXiv:hep-ph/0502154. Link: https://iopscience.iop.org/article/10.1088/1126-6708/2005/06/053
- A. Nicolaidis, M. Jannane, and A. Tarantola, Neutrino tomography of the earth, J. Geophys. Res. 96, 21811 (1991). Link: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/91JB01835
- S. Bourret, J. a. A. B. Coelho, and V. Van Elewyck (KM3NeT), Neutrino oscillation tomography of the Earth with KM3NeT-ORCA, J. Phys. Conf. Ser. 888, 012114 (2017), arXiv:1702.03723 [physics.ins-det]. Link: https://iopscience.iop.org/article/10.1088/1742-6596/888/1/012114
- A. Ioannisian, A. Smirnov, and D. Wyler, Scanning the Earth with solar neutrinos and DUNE, Phys. Rev. D 96, 036005 (2017), arXiv:1702.06097 [hep-ph]. Link: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.036005
- G. A. Askarian, Investigation of the Earth by means of neutrinos. Neutrino geology, Sov. Phys. Usp. 27, 896 (1984). Link: https://iopscience.iop.org/article/10.1070/PU1984v027n11ABEH004125
- E. Borriello, G. Mangano, A. Marotta, G. Miele, P. Migliozzi, C. A. Moura, S. Pastor, O. Pisanti, and P. E. Strolin, Sensitivity on Earth Core and Mantle densities using Atmospheric Neutrinos, JCAP 06, 030 (2009), arXiv:0904.0796[astro-ph.EP]. Link: https://iopscience.iop.org/article/10.1088/1475-7516/2009/06/030/meta
- A. N. Ioannisian, A. Y. Smirnov, and D. Wyler, Oscillations of the $^7$Be solar neutrinos inside the Earth, Phys. Rev. D 92, 013014 (2015), arXiv:1503.02183 [hep-ph]. Link: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.013014
- V. A. Tsarev and V. A. Chechin, Long Distance Neutrino. Physical Principles and Geophysical Applications. (In Russian), Fiz. Elem. Chast. Atom. Yadra 17, 389 (1986). Link: https://inis.iaea.org/search/search.aspx?orig_q=RN:18042059
- V. Ermilova, V. Tsarev, and V. Chechin, Restoration of the Density Distribution of Material Based on Neutrino Oscillations, Bull. Lebedev Phys. Inst. 1988N3, 51 (1988). Link: https://inspirehep.net/literature/270883
- P. Bakhti and A. Y. Smirnov, Oscillation tomography of the Earth with solar neutrinos and future experiments, Phys. Rev. D 101, 123031 (2020), arXiv:2001.08030 [hep-ph]. Link: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.123031
- A. Kumar and S. K. Agarwalla, Validating the Earth’s core using atmospheric neutrinos with ICAL at INO, JHEP 08, 139 (2021), arXiv:2104.11740 [hep-ph]. Link: https://link.springer.com/article/10.1007/JHEP08(2021)139
- A. N. Ioannisian and A. Y. Smirnov, Attenuation effect and neutrino oscillation tomography, Phys. Rev. D 96, 083009 (2017), arXiv:1705.04252 [hep-ph]. Link: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.083009
- C. A. Argüelles, M. Bustamante, and A. M. Gago, Searching for cavities of various densities in the Earth’s crust with a low-energy $\bar \nu_e$ $\beta$-beam, Mod. Phys. Lett. A 30, 1550146 (2015), arXiv:1201.6080 [hep-ph]. Link: https://www.worldscientific.com/doi/abs/10.1142/S0217732315501461
- I. Romero and O. A. Sampayo, About the Earth density and the neutrino interaction, Eur. Phys. J. C 71, 1696 (2011). Link: https://link.springer.com/article/10.1140/epjc/s10052-011-1696-0
- S. Bourret and V. Van Elewyck (KM3NeT), Earth tomography with neutrinos in KM3NeT-ORCA, EPJ Web Conf. 207, 04008 (2019). Link: https://www.epj-conferences.org/articles/epjconf/abs/2019/12/epjconf_vlvnt2018_04008/epjconf_vlvnt2018_04008.html
- A. B. Borisov and B. A. Dolgoshein, Determination of rock density by means of high-energy neutrino beams by the delayed muon method, Phys. Atom. Nucl. 56, 755 (1993). Link: https://ui.adsabs.harvard.edu/abs/1993PAN....56..755B/abstract
- L. V. Volkova, Neutrino Detection at Large Distances from Accelerators, Nuovo Cim. C 8, 552 (1985). Link: https://link.springer.com/article/10.1007/BF02582681
- P. B. Denton and R. Pestes, Neutrino Oscillations through the Earth’s Core, Phys. Rev. D 104, 113007 (2021), arXiv:2110.01148 [hep-ph]. Link: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.113007
- Volkova, L. V. and Zatsepin, G. T., On the problem of neutrino penetration though the earth. (talk, in russian), 1974. Link: https://inspirehep.net/literature/96971
- N. Takeuchi, Simulation of heterogeneity sections obtained by neutrino radiography, Earth, Planets and Space 62, 215 (2010). Link: https://earth-planets-space.springeropen.com/articles/10.5047/eps.2009.05.004
- A. D. Fortes, I. G. Wood, and L. Oberauer, Using neutrino diffraction to study the Earth's core, Astronomy and Geophysics 47, 5.31 (2006). Link: https://academic.oup.com/astrogeo/article/47/5/5.31/231838
- K. J. Kelly, P. A. N. Machado, I. Martinez-Soler, and Y. F. Perez-Gonzalez, DUNE atmospheric neutrinos: Earth Tomography, arXiv:2110.00003 [hep-ph]. Link: https://arxiv.org/abs/2110.00003
- S. Bourret, J. Coelho, E. Kaminski, and V. Van Elewyck, Probing the Earth Core Composition with Neutrino Oscillation Tomography, PoS ICRC2019, 1024 (2020). Link: https://pos.sissa.it/358/1024
- V. A. Tsarev, Geophysical applications of neutrino beams, Sov. Phys. Usp. 28, 940 (1985). Link: https://iopscience.iop.org/article/10.1070/PU1985v028n10ABEH003964/pdf
- J. C. D’Olivo, J. A. Herrera Lara, I. Romero, O. A. Sampayo, and G. Zapata, Earth tomography with atmospheric neutrino oscillations, Eur. Phys. J. C 80, 1001 (2020). Link: https://link.springer.com/article/10.1140/epjc/s10052-020-08585-5
- F. Capozzi and S. T. Petcov, Neutrino Tomography of the Earth with ORCA Detector, arXiv:2111.13048 [hep-ph]. Link: https://arxiv.org/abs/2111.13048
- Anuj Kumar Upadhyay et al. “Neutrino oscillations in Earth for probing dark matter inside the core”. In: (Dec. 2021). arXiv: 2112.14201 [hep-ph] . Link: https://arxiv.org/abs/2112.14201
- L. Maderer, J. Coelho, E. Kaminski, and V. Van Elewyck (KM3NeT), KM3NeT performance on oscillation and absorption tomography of the Earth, PoS ICRC2021, 1172 (2021). Link: https://pos.sissa.it/395/1172/pdf
- A. Placci and E. Zavattini, On the possibility of using high-energy neutrinos to study the earth’s interior , Tech. Rep. (CERN, Geneva, 1973). Link: http://cds.cern.ch/record/2258764?ln=en
- Nedyalkov, I.P., Notes on neutrino tomography, Acad. Bulgarian Sci. 34, 177 (1981). Link: https://ui.adsabs.harvard.edu/abs/1981BlDok..34..177N/abstract
- Nedyalkov, I.P., On the study of the Earth composition by means of neutrino experiments, Balatonfuered 1982, Proc. Neutrino ’82 1, 300 (1981). Link: https://inis.iaea.org/search/search.aspx?orig_q=RN:13704384
- Nedyalkov, I.P., Measurement of projected mass density - A basic problem of neutrino geophysics, Bolgarska Akademiia Nauk Doklady 36, 1515 (1983). Link: https://ui.adsabs.harvard.edu/abs/1983BlDok..36.1515N/abstract
- A. B. Borisov, B. A. Dolgoshein, and A. N. Kalinovsky, Direct Method for Determination of Differential Distribution of the Earth Density by Means of High-energy Neutrino Scattering. (In Russian), Yad. Fiz. 44, 681 (1986). Link: https://inis.iaea.org/search/search.aspx?orig_q=RN:18043899
Below are references regarding how geoneutrinos, which are produced by radioactive elements inside the Earth, can probe the heat budget of Earth or the abundance of radioactive material inside the mantle and core of Earth:
- https://igppweb.ucsd.edu/~gabi/rem.html
- G. Bellini, K. Inoue, F. Mantovani, A. Serafani, V. Strati, and H. Wtanabe, Geoneutrinos and geoscience: an intriguing joint-venture, Riv.Nuovo Cim. 45(2022)1,1-105, 2109.01482 [physics.geo-ph]. Link: https://link.springer.com/article/10.1007/s40766-021-00026-7
- T. Sakai, et.al., Study of Ocean Bottom Detector for observation of geo-neutrino from the mantle (2022). Link: https://iopscience.iop.org/article/10.1088/1742-6596/2156/1/012144
- Laura G. Sammon, & William F. McDonough, Quantifying Earth’s radiogenic heat budget (2022). Link: https://www.essoar.org/doi/10.1002/essoar.10510480.1
- W. F. McDonough et.al., Radiogenic Power and Geoneutrino Luminosity of the Earth and Other Terrestrial Bodies Through Time (2020). Link: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GC008865
- V. Strati et.al., Geoneutrinos from the rock overburden at SNO+ (2020). Link: https://iopscience.iop.org/article/10.1088/1742-6596/1342/1/012020
- S. A. Wipperfurth et.al., Reference Models for Lithospheric Geoneutrino Signal (2020). Link: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JB018433
- Bedřich Roskovec et.al., Testing a proposed “second continent” beneath eastern China using geoneutrino measurements (2018). Link: https://arxiv.org/abs/1810.10914
- Michael Leyton et.al., Exploring the hidden interior of the Earth with directional neutrino measurements (2017). Link: https://www.nature.com/articles/ncomms15989
- Ondřej Šrámek et.al., Revealing the Earth’s mantle from the tallest mountains using the Jinping Neutrino Experiment (2016). Link: https://www.nature.com/articles/srep33034
- William F. McDonough, Geoneutrinos (2016). Link: https://link.springer.com/referenceworkentry/10.1007/978-3-319-39193-9_213-1
- S. T. Dye et.al., Geo-neutrinos and Earth Models (2015). Link: https://www.sciencedirect.com/science/article/pii/S1875389214006634
- S. M. Usman et.al., AGM2015: Antineutrino Global Map 2015 (2015). Link: https://www.nature.com/articles/srep13945
- William F. McDonough & Ondřej Šrámek, Neutrino geoscience, news in brief (2014). Link: https://link.springer.com/article/10.1007/s12665-014-3133-9
- L. Ludhova and S. Zavatarelli, Studying the Earth with Geoneutrinos (2013). Link: https://www.hindawi.com/journals/ahep/2013/425693/
- William F. McDonough et.al., Geophysical and geochemical constraints on geoneutrino fluxes from Earth’s mantle (2013). Link: https://www.sciencedirect.com/science/article/abs/pii/S0012821X12006097?via%3Dihub
- G. Bellini et.al., Geo-neutrinos (2013). Link: https://www.sciencedirect.com/science/article/pii/S0146641013000732?via%3Dihub
- Yu Huang et.al., A reference Earth model for the heat-producing elements and associated geoneutrino flux (2013). Link: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/ggge.20129
- Y Huang et.al., Towards a refined reference Earth model for geo-neutrinos (2012). Link: https://iopscience.iop.org/article/10.1088/1742-6596/375/1/042041
- William F. McDonough, Neutrinos: messengers from the underworld (2012). Link: https://www.newscientist.com/article/mg21428621-800-neutrinos-messengers-from-the-underworld/
- S. T. Dye, Geoneutrinos and the radioactive power of the Earth (2012). Link: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012RG000400
- Ondřej Šrámek et.al., Geoneutrinos (2012). Link: https://www.hindawi.com/journals/ahep/2012/235686/
- M. Coltorti et.al., U and Th content in the Central Apennines continental crust: A contribution to the determination of the geo-neutrinos flux at LNGS (2011). Link: https://www.sciencedirect.com/science/article/pii/S001670371100041X?via%3Dihub
- The KamLAND Collaboration, Partial radiogenic heat model for Earth revealed by geoneutrino measurements (2011). Link: https://www.nature.com/articles/ngeo1205
- S. T. D ye et.al., Geoneutrino Measurements and Models Investigate Deep Earth (2011). Link: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008EO440002
- Borexino Collaboration, Observation of geo-neutrinos (2010). Link: https://www.sciencedirect.com/science/article/pii/S0370269310003722?via%3Dihub
- S. T. Dye, Geo-neutrinos and silicate earth enrichment of U and Th (2010). Link: https://www.sciencedirect.com/science/article/pii/S0012821X10003869?via%3Dihub
- J. H. Davies and D. R. Davies, Earth’s surface heat flux (2010). Link: https://se.copernicus.org/articles/1/5/2010/
- Stephen T. Dye and Eugene H. Guillian, Estimating terrestrial uranium and thorium by antineutrino flux measurements (2008). Link: https://www.pnas.org/doi/full/10.1073/pnas.0706541105
- S. Enomoto et.al. Neutrino geophysics with KamLAND and future prospects (2007). Link: https://www.sciencedirect.com/science/article/pii/S0012821X07001872?via%3Dihub
- Gianni Fiorentini et.al., Geo-neutrinos and earth’s interior (2007). Link: https://www.sciencedirect.com/science/article/pii/S0370157307003468
- Fabio Mantovani et.al., Antineutrinos from Earth: A reference model and its uncertainties (2004). Link: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.69.013001
- R. S. Raghavan et.al., Measuring the Global Radioactivity in the Earth by Multidetector Antineutrino Spectroscopy (1998). Link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.80.635
- Masao Kobayashi and Yoshio Fukao, The Earth as an Antineutrino star (1991). Link: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/91GL00800
- G. Marx, Geophysics by neutrinos (1969). Link: https://link.springer.com/article/10.1007/BF01698889
- Gernot Eder, Terrestrial neutrinos (1966). Link: https://www.sciencedirect.com/science/article/pii/0029558266909035
- IceCube and IceCube Gen-2 (neutrino absorption tomography)
- DeepCore and its upgrade (neutrino oscillation tomography)
- ARCA (absorption) and ORCA (oscillation)
- DUNE Atmospheric (neutrino oscillation)
- Hyper-K Atmospheric (neutrino oscillation)
- Super-K Atmospheric (neutrino oscillation)
- ICAL at INO with CID (neutrino oscillation)
- P-ONE (neutrino absorption and oscillation)
- Neutrino Oscillation Tomography Workshop
Earthquake Research Institute, University of Tokyo, 7th to 8th June, 2016
https://indico.cern.ch/event/442108/ - Neutrino Geoscience 2019 Prague
Charles University, Prague, 21st to 23rd October, 2019
https://indico.cern.ch/event/825708/timetable/?view=standard